Steady flow dynamics during granular impact
نویسندگان
چکیده
منابع مشابه
Nonlocal constitutive relation for steady granular flow.
Extending recent modeling efforts for emulsions, we propose a nonlocal fluidity relation for flowing granular materials, capturing several known finite-size effects observed in steady flow. We express the local Bagnold-type granular flow law in terms of a fluidity ratio and then extend it with a particular Laplacian term that is scaled by the grain size. The resulting model is calibrated agains...
متن کاملSteady Flow and its Instability of Gravitational Granular Flow
Granular matter consists of a large number of macroscopic particles; the thermal noise has no effect on the particle motion and the interactions are dissipative. These features make the granular flow very different from molecular fluids. One of the simplest situations to see the complex behavior of granular flow is the gravitational granular flow on a slope. When the inclination angle is small ...
متن کاملDynamics of random packings in granular flow.
We present a multiscale simulation algorithm for amorphous materials, which we illustrate and validate in a canonical case of dense granular flow. Our algorithm is based on the recently proposed spot model, where particles in a dense random packing undergo chainlike collective displacements in response to diffusing "spots" of influence, carrying a slight excess of interstitial free volume. We r...
متن کاملSingle-polymer dynamics in steady shear flow.
The conformational dynamics of individual, flexible polymers in steady shear flow were directly observed by the use of video fluorescence microscopy. The probability distribution for the molecular extension was determined as a function of shear rate, gamma;, for two different polymer relaxation times, tau. In contrast to the behavior in pure elongational flow, the average polymer extension in s...
متن کاملParticle scale dynamics in granular impact.
We perform an experimental study of granular impact, where intruders strike 2D beds of photoelastic disks from above. High-speed video captures the intruder dynamics and the local granular force response, allowing investigation of grain-scale mechanisms in this process. We observe rich acoustic behavior at the leading edge of the intruder, strongly fluctuating in space and time, and we show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2016
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.93.050901